

MULTI-MONTI®-plus

European Technical Assessment ETA-15/0784

Screw anchor for use in cracked and uncracked concrete

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0784 of 23 April 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Screw anchor of size 6, 7.5, 10, 12, 16 and 20 mm for use in cracked and uncracked concrete

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG Werk Schramberg

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-15/0784 issued on 19 May 2016

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Page 2 of 14 | 23 April 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 23 April 2018

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Screw anchor MULTI-MONTI-plus is an anchor in size 6, 7.5, 10, 12, 16 and 20 mm made of galvanised steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading categories C1 and C2	See Annex C 2
Displacements under tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

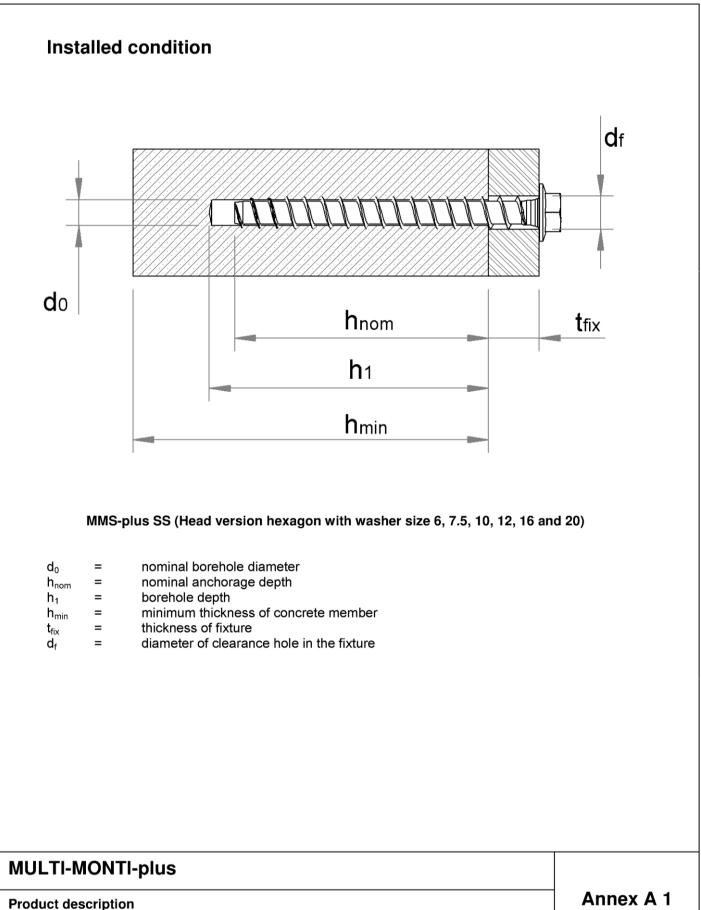
The system to be applied is: 1

European Technical Assessment ETA-15/0784

Page 4 of 14 | 23 April 2018

English translation prepared by DIBt

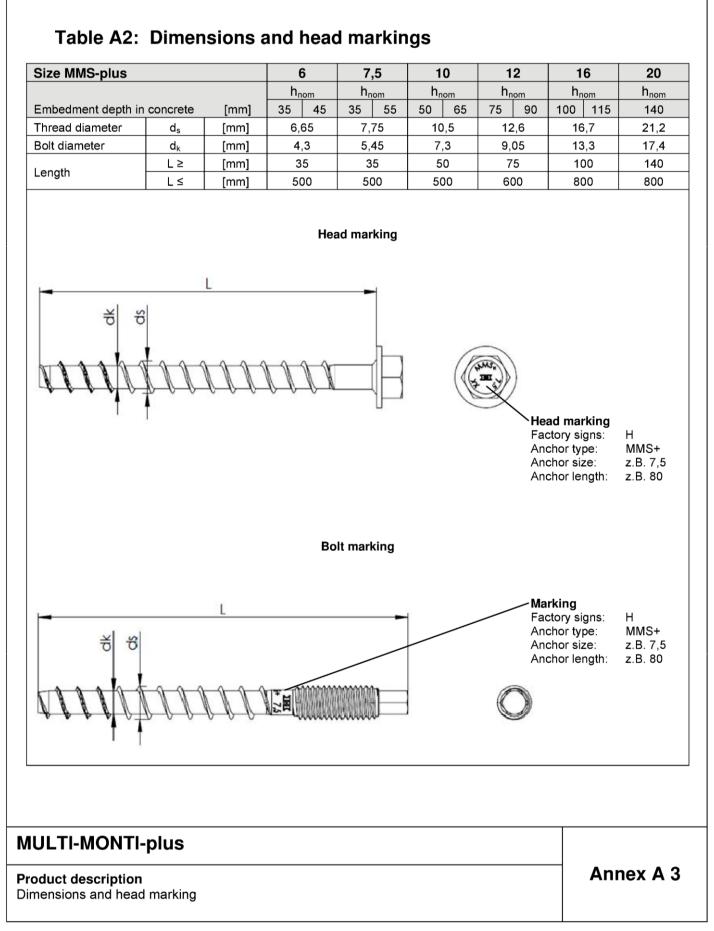
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 April 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Tempel


Product in the installed state

Туре	Marking / Material										
	screw anchor / steel ¹⁾										
1, 2,	Size MMS-plus			6	7,5	10	12	16	20		
3, 4, 5, 6,	nominal value of the characteristic yield strength	f _{yk}	[N/mm²]	640	640	640	640	640	640		
7, 8, 9, 10,	nominal value of the characteristic tensile strength	f _{uk}	[N/mm²]	800	800	800	800	800	800		
11	elongation at rupture	A ₅	[%]			≦	8				
	1) galvanized steel according EN 10	263-4:200		red coati	ng systems	are possik	ole)				
	ATTERITIES	ONTI-plus e design w									
	<i>ALLEURINEUR</i>	MULTI-MONTI-plus SS, with Hexagon Head and washer (alternative design with cone under the head)									
			XX Z U T T T T T T T T T T T T T	3)	MULTI-MO	ONTI-plus	P, PanHea	ıd, with sm	all Pan He		
			XX C S'L) 4)	MULTI-MO large Pan		MS, mount	ting bar-an	chor, with		
				5)	MULTI-MONTI-plus F, with Countersunk						
Ø,				6)	MULTI-MONTI-plus FT, with Countersunk, under he thread and single- or multi-start thread						
\overline{V}	ununu ar			7)	MULTI-MO head threa (alternative	ad and sing	le- or mult	ti-start thre	ad		
				8)	MULTI-MO	ONTI-plus :	ST, anchoi	r with metr	ic stud		
			(\bigcirc)	9)	MULTI-MC						
	<u> () () () () () () () () () () () () () </u>		0	10)	MULTI-MO	ONTI-plus `	√, anchor v	with metric	stud		
	annun III	ONTI-plus I d single- or iameters c pression p	multi-stari	t thread,							

Product description Dimensions and screw types

Specifications of intended use

Use of the anchoring:

- · Static and quasi static loads: all sizes
- · Seismic category C1:

MMS-plus all Versions, size 10 with maximum embedment depth (h_{nom}), size 12 with both embedment depth (h_{nom}) and size 16 and 20 with maximum embedment depth (h_{nom})

- · Seismic category C2:
 - MMS-plus all Versions, size 16 and 20 with maximum embedment depth (hnom)
- Fire exposure: all sizes

Base Materials:

- Reinforced or non-reinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- · Cracked and uncracked concrete

Conditions of use (Environmental conditions):

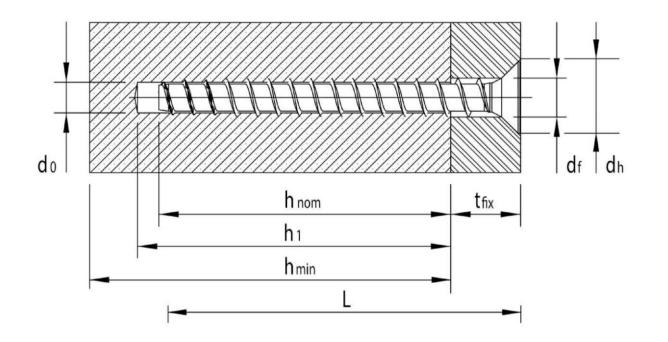
Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- The design of the anchoring under static or quasi-static actions and fire exposure have to be carried out in accordance with FprEN 1992-4:2017 and EOTA Technical Report TR055
- The design under shear load according to FprEN 1992-4:2017, section 6.2.2 applies to all in appendix B2, table B1 specified diameter df the diameter of clearance hole in the fixture

Installation:

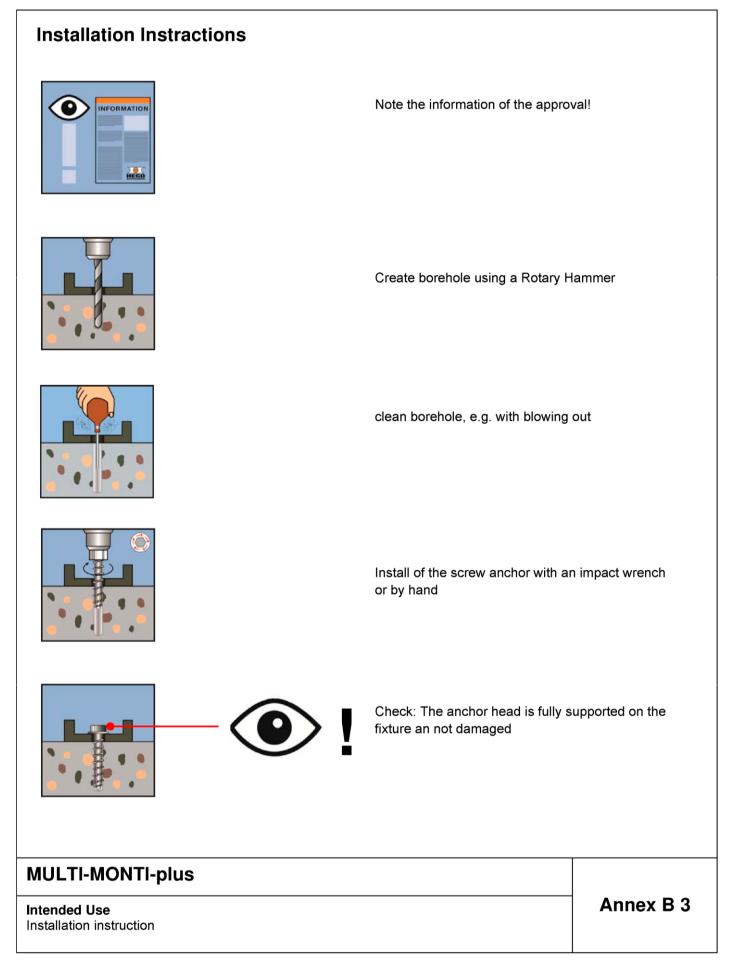
- Hole drilling by hammer-drilling only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- After installation further turning of the anchor must not be possible
- The head of the anchor is attached to the fixture and is not damaged, respectively the required embedment depth is reached.


MULTI-MONTI-plus

Intended Use Specification Annex B 1

Table B1: Installation parameters MMS-plus

Size MMS-	olus			(6	7	,5	1	0	1	2	1	6	20
				h	om	h	iom	h	iom	h	iom	h	iom	h _{nom}
Embedment	depth in concre	te	[mm]	35	45	35	55	50	65	75	90	100	115	140
Norminal drill	diameter	do	[mm]	l	5		6	8		10		14		18
Drill bit cuttin	g-Ø	d _{cut} ≤	[mm]	5,	5,40		40	8,45		10	,45	14	,50	18,50
Borehole dep	oth	h₁≥	[mm]	40	50	40	65	60	75	85	100	115	130	160
Diameter of o the fixure	clearhole in	d _f ≤	[mm]	7		9		12,5		14,5		1	9	23
Diameter Co	untersunk	d _h	[mm]	11,5		15	5,5	,5 19,5		24		~		-
Min. thicknes concrete mer		h _{min}	[mm]	0		100		100	115	125	150	1	50	180
cracked and	min. spacing	S _{min}	[mm]	3	0	35		35		40		60		80
uncracked concrete	min. edge distance	C _{min}	[mm]	3	0	3	0	3	5	40		60		80
Perommond	ed installation to		[Nim]	Imp	pact scr	ew driv	er, max	power	output	T _{max} ac	cording	manufa	acturer	information
Recommend	eu installation to		[Nm]	75 100		1:	20	2	50	2	50	6	00	800
Torque mom threaded vers (MMS-plus V	sion	T _{inst}	[Nm]	-		1	15		20		30		70	140


MULTI-MONTI-plus

Intended Use

Installation parameters

Annex B 2

Table C1Characteristic values for static and quasi-static
loading MMS-plus

Size MMS-plus	;				6	5	7	,5	1	0	1	2	1	6	20
					h _n	om	h	Iom	h	iom	h	nom	h	om	h _{nom}
Embedmend dep	th in co	ncrete		[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Steelfailure for T	Fensio r	n- and She	ear resis	tance											
Characteristic res	sistance)	N _{Rk,s}	[kN]	10	,8	17	7,6	32	2,1	49	9,9	11	1,1	190,2
Partial safety fact	tor		γ́Ms	-					_	1,	50				
Characteristic res	sistance)	V _{Rk,s}	[kN]	4	,1	6	,1	13	3,7	24	1,1	50),2	85,3
Partial safety fact	tor		γмs	-	1,25										
			k ₇ ²⁾	-	0,8										
Characteristic res	sistance	9	M ⁰ _{Rk,s}	[Nm]	6,7 14,1 34,5 66,8 207,6						7,6	464,3			
Pullout															
Characteristic res	[kN]	5,5	8	4	_ 2)	-	2)		2)		2)	_ 2)			
uncracked concre	/25	N _{Rk,p}	[KIN]	5,5	0	4	-					-		-	
Characteristic resistance in			N _{Rk.p}	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
cracked concrete C20/25		INRk,p	[KIN]	<u>'</u>	1,5	2	-	Ŭ				20	50		
Increasing factor								1,	22						
concrete	oncrete C40/50			-						1,	41				
		C50/60								1,	58				
Concrete cone fa	ailure a	and splitti	ng failur	e											
Effective anchora	ige dep	th	h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Factor for	crack	ked	k _{cr,N}	-	7,7										
	uncra	acked	k _{ucr,N}	-						11	1,0				
Concrete cone	edge	distance	C _{cr,N}	[mm]						1.5	5 h _{ef}				
	spac	ing	S _{cr,N}	[mm]						3	h _{ef}				
Splitting	edge	distance	C _{cr,sp}	[mm]						1.5	5 h _{ef}				
opinting	spac	ing	S _{cr,sp}	[mm]						3	h _{ef}				
Installation safety	factor		γ_{inst}	-						1	,0				
Concrete pryout	failure)													
k-Factor			k ₈	-				1,0						2,0	
Concrete edge fa	ailure														
Effective length o	of the ar	nchor	$l_f = h_{ef}$	[mm]	26	35	26	43	36	50	57	70	77	90	114
Effective diamete	r of the	anchor	d _{nom}	[mm]	ų	5		6	8	3	1	0	1	4	18

¹⁾ Only for non-structural applications

²⁾ Pullout is not decisive

MULTI-MONTI-plus

Performance

Characteristic values for static and quasi static tensions load

Annex C 1

Table		Cnara	cteris		es for sei	smic acti							
Size MMS-p	olus			10		12	16	20					
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}					
Embedment	depth in concrete		[mm]	65	75	90	115	140					
Steelfailure	or Tension- and	Shear res	sistance										
Characterieti		N _{Rk,s,eq}	[kN]	24,1	3	7,4	100,0	142,7					
Characteristic	cresistance	V _{Rk,s,eq}	[kN]	9,6	1	6,9	45,2	81,0					
Pullout													
Characteristic cracked conc	c resistance in rete	$N_{Rk,p,eq}$	[kN]	6,8	9,0	12,0	21,0	33,0					
Concrete co	ne failure					•	•						
Effective anc	horage depth	h _{ef}	[mm]	50	57	70	90	114					
concrete	edge distance	C _{cr,N}	[mm]			1.5 h _{ef}							
cone	spacing	S _{cr,N}	[mm]		3 h _{ef}								
Installation sa	afety factor	γ_2	-			1,0							
Concrete pry	out failure												
k-Factor		k	-	1	,0		2,0						
Concrete edge	e failure												
-	Effective length of the anchor I _f =		[mm]	50	57	70	90	114					
Effective dian	neter-Ø	d _{nom}	[mm]	8		10	14	18					

Table C2.2Characteristic values for seismic actions C2

Size MMS-plu	us			16	20
				h _{nom}	h _{nom}
Embedment de	pth in concrete		[mm]	115	140
Steelfailure for	r Tension- and	Shear res	sistance	1	
Characteristic	interner.	$N_{Rk,s,eq}$	[kN]	100,0	142,7
Characteristic r	esistance	$V_{Rk,s,eq}$	[kN]	27,6	57,2
Pullout					
Characteristic r	esistance in	N	EL-NIJ	11.0	40.4
cracked concre	te	$N_{Rk,p,eq}$	[kN]	14,0	18,1
Concrete cone	e failure				
Effective ancho	orage depth	h _{ef}	[mm]	90	114
concrete	edge distance	C _{cr,N}	[mm]	1.5	h _{ef}
cone	spacing	S _{cr,N}	[mm]	3	h _{ef}
Installation safe	ety factor	γ_2	-	1,	0
Concrete pryo	ut failure				
k-Factor		k	-	2,	0
Concrete edge f	ailure				
Effective length	of the anchor	l _f = h _{ef}	[mm]	90	114
under shear loa	under shear loading		[mm]	90	114
Effective diame	eter-Ø	d _{nom}	[mm]	14	18

MULTI-MONTI-plus

Performance

Characteristic value for seismic actions C1 and C2

Annex C 2

Size MMS-plu	S			(6	7	5	1	0	1	2	16		20
				h	h _{nom}		h _{nom}		om	h _{nom}		h _{nom}		\mathbf{h}_{nom}
Embedment dep	th in concrete		[mm]	35	45	35	55	50	65	75	90	100	115	140
Characteristic r	esistance for ter	nsion and	d shear											
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Characteristic	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	0	,5	1	1	2	7	5	,3	16	6,4	36,6
	R60	M ⁰ _{Rk,s,fi}	[Nm]	0	,3	0	6	1,	5	2	,8	8	,9	19,8
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0	,2	0	4	1,	,1	2	,0	6	,4	14,2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0	,2	0	3	0	9	1	,6	5	,1	11,4
Edge distance														
	R30 bis R120	C _{cr,fi}	[mm]						2	h _{ef}				
Spacing														
	R30 bis R120	S _{cr,fi}	[mm]						2.4	cr,fi				

_ **f** :

MULTI-MONTI-plus

Performance Characteristic values under fire exposure

Table C4Displacements under tension loads

Size MMS-plus			6		7	,5	1	10		2	16		20
			h	h _{nom}		h _{nom}		h _{nom}		h _{nom}		om	h _{nom}
Embedment depth in concrete [mm]			35	45	35	55	50	65	75	90	100	115	140
Tension load uncracked concrete	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3
Displacement	δ_{N0}	[mm]	0,11	0,11	0,06	0,12	0,06	0,07	0,05	0,19	0,09	0,09	0,09
Displacement	δ _{N∞}	[mm]	0,30	0,28	0,38	1,03	0,75	0,72	0,74	0,60	0,13	0,13	0,13
Tension load cracked concrete	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	20,0	30,0	20,95
Displacement	δ_{N0}	[mm]	0,01	0,02	0,03	0,04	0,03	0,09	0,05	0,02	0,09	0,09	0,09
Displacement	δ _{N∞}	[mm]	0,14	0,09	0,12	0,11	0,08	0,09	0,07	0,22	1,38	1,38	0,69

Table C5

Displacements under shear loads

Size MMS-plus			6		7	7,5		10		12		6	20
			h _{nom}		h _{nom}								
Embedment depth in concr	ete	[mm]	35	45	35	55	50	65	75	90	100	115	140
Shear load uncracked concrete	V	[kN]	2,0		4,0		8	8,0		12,0		2,6	42,8
Displacement	$\delta_{\vee 0}$	[mm]	0,14 0,13		0,09	0,11	0,18	0,13	0,18		2	,9	3,4
Displacement	splacement $\frac{\delta_{V^{\infty}}}{\delta_{V^{\infty}}}$ [mm]		0,20	0,19	0,13	0,16	0,27 0,20		0,27		4,4		5,1

MULTI-MONTI-plus

Performance Displacements

Annex C 4

Z17055.18

HECO-Schrauben GmbH & Co.KG

Dr.-Kurt-Steim-Straße 28 · D-78713 Schramberg Tel.: +49 (0) 74 22 / 9 89-0 · Fax: +49 (0) 74 22 / 9 89-200 Mail: info@heco-schrauben.de · www.heco-schrauben.de